资源类型

期刊论文 553

会议视频 13

年份

2024 1

2023 40

2022 49

2021 64

2020 43

2019 31

2018 27

2017 26

2016 26

2015 24

2014 17

2013 18

2012 21

2011 16

2010 31

2009 25

2008 32

2007 34

2006 8

2005 3

展开 ︾

关键词

大气污染 4

绿色化工 4

温度控制 3

碳中和 3

“一带一路” 2

仿真 2

催化剂 2

催化裂化 2

催化裂解 2

光催化 2

动力气垫 2

协同效应 2

发展 2

地效翼船 2

数值模拟 2

2 1

2021全球工程前沿 1

300 M钢 1

4-二硝基茴香醚 1

展开 ︾

检索范围:

排序: 展示方式:

Phenolic compounds removal by wet air oxidation based processes

Linbi Zhou, Hongbin Cao, Claude Descorme, Yongbing Xie

《环境科学与工程前沿(英文)》 2018年 第12卷 第1期 doi: 10.1007/s11783-017-0970-2

摘要: Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) are efficient processes to degrade organic pollutants in water. In this paper, we especially reviewed the WAO and CWAO processes for phenolic compounds degradation. It provides a comprehensive introduction to the CWAO processes that could be beneficial to the scientists entering this field of research. The influence of different reaction parameters, such as temperature, oxygen pressure, pH, stirring speed are analyzed in detail; Homogenous catalysts and heterogeneous catalysts including carbon materials, transitional metal oxides and noble metals are extensively discussed, among which Cu based catalysts and Ru catalysts were shown to be the most active. Three different kinds of the reactor implemented for the CWAO (autoclave, packed bed and membrane reactors) are illustrated and compared. To enhance the degradation efficiency and reduce the cost of the CWAO process, biological degradation can be combined to develop an integrated technology.

关键词: Wet air oxidation     Catalytic wet air oxidation     Phenolic compounds     Heterogeneous catalysts     Mechanism    

Catalytic wet air oxidation of phenol, nitrobenzene and aniline over the multi-walled carbon nanotubes

Shaoxia YANG,Yu SUN,Hongwei YANG,Jiafeng WAN

《环境科学与工程前沿(英文)》 2015年 第9卷 第3期   页码 436-443 doi: 10.1007/s11783-014-0681-x

摘要: Wet air oxidation (WAO) is one of effective technologies to eliminate hazardous, toxic and highly concentrated organic compounds in the wastewater. In the paper, multi-walled carbon nanotubes (MWCNTs), functionalized by O , were used as catalysts in the absence of any metals to investigate the catalytic activity in the catalytic wet air oxidation (CWAO) of phenol, nitrobenzene (NB) and aniline at the mild operating conditions (reaction temperature of 155°C and total pressure of 2.5 MPa) in a batch reactor. The MWCNTs were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), gas adsorption measurements (BET), fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). The functionalized MWCNTs showed good catalytic performance. In the CWAO of phenol over the functionalized MWCNTs, total phenol removal was obtained after 90 min run, and the reaction apparent activation energy was ca. 40 kJ·mol . The NB was not removed in the CWAO of single NB, while ca. 97% NB removal was obtained and 40% NB removal was attributed to the catalytic activity after 180 min run in the presence of phenol. Ca. 49% aniline conversion was achieved after 120 min run in the CWAO of aniline.

关键词: catalytic wet air oxidation (CWAO)     carbon nanotubes (CNTs)     phenol     nitrobenzene     aniline    

Wastewater treatment by catalytic wet air oxidation process over Al-Fe pillared clays synthesized using

Halima Sassi, Gwendoline Lafaye, Hédi Ben Amor, Abdelaziz Gannouni, Mohamed Razak Jeday, Jacques Barbier-Jr

《环境科学与工程前沿(英文)》 2018年 第12卷 第1期 doi: 10.1007/s11783-017-0971-1

摘要: Microwave irradiation has been used to prepare Al, Fe-pillared clays from a natural Tunisian smectite from the El Hicha deposit (province of Gabes). Chemical analysis, XRD spectra and surface properties evidenced the success of pillaring process. The obtained solids present higher surface area and pore volume than conventionally prepared Al-Fe pillared clays. The main advantages of the microwave methodology are the considerable reduction of the synthesis time and the consumption of water. The microwave-derived Al-Fe pillared clays have been tested for catalytic wet air oxidation (CWAO) of phenol in a stirred tank at 160°C and 20 bar of pure oxygen pressure. These materials are efficient for CWAO of phenol and are highly stable despite the severe operating conditions (acidic media, high pressure, high temperature). The catalyst deactivation was also significantly hindered when compared to conventionally prepared clays. Al-Fe pillared clays prepared by microwave methodology are promising as catalysts for CWAO industrial water treatment.

关键词: Water     Catalytic wet air oxidation     Pillared clays     Microwave     Phenol    

Preparation of rare-earth metal complex oxide catalysts for catalytic wet air oxidation

LI Ning, LI Guangming, YAO Zhenya, ZHAO Jianfu

《环境科学与工程前沿(英文)》 2007年 第1卷 第2期   页码 190-195 doi: 10.1007/s11783-007-0033-1

摘要: Catalytic wet air oxidation (CWAO) is one of the most promising technologies for pollution abatement. Developing catalysts with high activity and stability is crucial for the application of the CWAO process. The Mn/Ce complex oxide catalysts for CWAO of high concentration phenolcontaining wastewater were prepared by coprecipitation. The catalyst preparation conditions were optimized by using an orthogonal layout method and single-factor experimental analysis. The Mn/Ce serial catalysts were characterized by Brunauer Emmett Teller (BET) analysis and the metal cation leaching was measured by inductively coupled plasma torch-atomic emission spectrometry (ICP-AES). The results show that the catalysts have high catalytic activities even at a low temperature (80?C) and low oxygen partial pressure (0.5 MPa) in a batch reactor. The metallic ion leaching is comparatively low (Mn<6.577 mg/L and Ce<0.6910 mg/L, respectively) in the CWAO process. The phenol, COD, and TOC removal efficiencies in the solution exceed 98.5% using the optimal catalyst (named CSP). The new catalyst would have a promising application in CWAO treatment of high concentration organic wastewater.

关键词: torch-atomic emission     Brunauer     Catalytic     process     stability    

Characterization of value-added chemicals derived from the thermal hydrolysis and wet oxidation of sewage

Milan Malhotra, Anurag Garg

《环境科学与工程前沿(英文)》 2021年 第15卷 第1期 doi: 10.1007/s11783-020-1305-2

摘要: Abstract • Hydrothermal treatment can greatly improve resource recovery from sewage sludge. • tCOD removal during WO was ~55% compared with ~23% after TH. • TOC solubilization during hydrothermal treatment followed first-order kinetics. • Solids and carbon balance confirmed loss of organics during thermal hydrolysis. • Reaction pathways for thermal hydrolysis and wet oxidation are proposed. We evaluated the effect of hydrothermal pretreatments, i.e., thermal hydrolysis (TH) and wet oxidation (WO) on sewage sludge to promote resource recovery. The hydrothermal processes were performed under mild temperature conditions (140°C–180°C) in a high pressure reactor. The reaction in acidic environment (pH= 3.3) suppressed the formation of the color imparting undesirable Maillard’s compounds. The oxidative conditions resulted in higher volatile suspended solids (VSS) reduction (~90%) and chemical oxygen demand (COD) removal (~55%) whereas TH caused VSS and COD removals of ~65% and ~27%, respectively at a temperature of 180°C. During TH, the concentrations of carbohydrates and proteins in treated sludge were 400–1000 mg/L and 1500–2500 mg/L, respectively. Whereas, WO resulted in solids solubilization followed by oxidative degradation of organics into smaller molecular weight carboxylic acids such as acetic acid (~400–500 mg/L). Based on sludge transformation products generated during the hydrothermal pretreatments, simplified reaction pathways are predicted. Finally, the application of macromolecules (such as proteins), VFAs and nutrients present in the treated sludge are also discussed. The future study should focus on the development of economic recovery methods for various value-added compounds.

关键词: Hydrothermal pretreatment     Reaction kinetics     Reaction pathway     Sewage sludge     Thermal hydrolysis     Wet oxidation    

Removing ammonia from air with a constant pH, slightly acidic water spray wet scrubber using recycled

Ahmad Kalbasi Ashtari, Amir M. Samani Majd, Gerald L. Riskowski, Saqib Mukhtar, Lingying Zhao

《环境科学与工程前沿(英文)》 2016年 第10卷 第6期 doi: 10.1007/s11783-016-0869-3

摘要: Slightly acidic solutions are a practical means of removing ammonia from air Scrubbed NH accumulates in solution as NH and should be an excellent fertilizer Increased air velocity decreased NH removal and increased NH collection Previous research on wet scrubbers has only studied highly acidic scrubbing solutions because of their high ammonia capture efficiencies; however, the high acidity created practical problems. Lower acidity solutions would reduce corrosion, maintenance, and cost; however, designers may need to use strategies for increasing scrubber effectiveness, such as using lower air velocities. The objective of this study was to determine if a spray scrubber with slightly acidic and higher pH scrubbing solution (pH from 2 to 8) could effectively remove NH from NH laden air (such as animal building exhaust air), and also collect this valuable resource for later use as a fertilizer. A bench-scale spray wet scrubber treated 20 ppmv NH /air mixture in a countercurrent contact chamber. First, the solution pH was varied from 2 to 8 while maintaining constant air velocity at 1.3 m·s . Next, air velocity was increased (2 and 3 m·s ) while solution pH remained constant at pH6. At 1.3 m·s , NH removal efficiencies ranged between 49.0% (pH8) and 84.3% (pH2). This study has shown that slightly acidic scrubbing solutions are a practical means of removing ammonia from air especially if the scrubber is designed to increase collisions between solution droplets and NH molecules. The NH removed from the air was held in solution as NH and accumulates over time so the solution should be an excellent fertilizer.

关键词: Ammonia     Spray wet scrubber     Slightly acidic scrubbing solution     Controlled pH     Removal efficiency    

Microwave-assisted catalytic oxidation of gaseous toluene with a Cu-Mn-Ce/cordierite honeycomb catalyst

Longli Bo, Shaoyuan Sun

《化学科学与工程前沿(英文)》 2019年 第13卷 第2期   页码 385-392 doi: 10.1007/s11705-018-1738-3

摘要: A novel Cu-Mn-Ce/cordierite honeycomb catalyst was prepared by an incipient wetness method and the catalyst was characterized. The active ingredients were present as various spinel species of Cu, Mn and Ce oxides with different valences and they were unevenly dispersed over the surface of the catalyst. The catalytic oxidation of gaseous toluene was primarily investigated using a fixed bed reactor under microwave heating in the continuous flow mode. Under the optimal conditions of 6.7 wt-% loading of the active component, a bed temperature of 200°C, a flow rate of 0.12 m ·h and an initial concentration of toluene of 1000 mg·m , the removal and mineralization efficiencies of toluene were 98% and 70%, respectively. Thus the use of the microwave effectively improved the oxidation of toluene and this is attributed to dipole polarization and hotspot effects. After four consecutive cycles (a total of 1980 min), the Cu-Mn-Ce/cordierite catalyst still exhibited excellent catalytic activity and structural stability, and the toluene removal was higher than 90%. This work demonstrates the possibility of treating volatile organic compounds in exhaust gases by microwave-assisted catalytic oxidation.

关键词: microwave     catalytic oxidation     toluene     Cu-Mn-Ce/cordierite     mineralization    

Catalytic oxidation of

Na Li, Xin Xing, Yonggang Sun, Jie Cheng, Gang Wang, Zhongshen Zhang, Zhengping Hao

《环境科学与工程前沿(英文)》 2020年 第14卷 第6期 doi: 10.1007/s11783-020-1284-3

摘要: Abstract • Superior catalytic activity observed for o-chlorophenol oxidation on Co2MgAlO. • The reducibility, oxygen species and basicity influenced catalytic activity. • The organic by-products were generated in o-chlorophenol catalytic oxidation. A cobalt-based hydrotalcite-like compound was prepared using a constant-pH coprecipitation method. Cobalt-transition metal oxides (Co2XAlO, X= Co, Mg, Ca and Ni) were investigated for the deep catalytic oxidation of o-chlorophenol as a typical heteroatom contaminant containing chlorine atoms. The partial substitution of Co by Mg, Ca or Ni in the mixed oxide can promote the catalytic oxidation of o-chlorophenol. The Co2MgAlO catalyst presented the best catalytic activity, and could maintain 90% o-chlorophenol conversion at 167.1°C, compared only 27% conversion for the Co3AlO catalyst. The results demonstrated that the high activity could be attributed to its increased low-temperature reducibility, rich active oxygen species and excellent oxygen mobility. In the existence of acid and base sites, catalysts with strong basicity also showed preferred activity. The organic by-products generated during the o-chlorophenol catalytic oxidation over Co2MgAlO catalyst included carbon tetrachloride, trichloroethylene, 2,4-dichlorophenol, and 2,6-dichloro-p-benzoquinon, et al. This work provides a facile method for the preparation of Co-based composite oxide catalysts, which represent promising candidates for typical chlorinated and oxygenated volatile organic compounds.

关键词: Hydrotalcite-derived mixed oxides     o-chlorophenol     Catalytic oxidation     Organic by-products    

Effect of Cu-ZSM-5 catalysts with different CuO particle size on selective catalytic oxidation of N,N-Dimethylformamide

《环境科学与工程前沿(英文)》 2022年 第16卷 第10期 doi: 10.1007/s11783-022-1557-0

摘要:

● A series of Cu-ZSM-5 catalysts were tested for DMF selective catalytic oxidation.

关键词: N     N-Dimethylformamide     Selective catalytic oxidation     Cu-ZSM-5     CuO particle size    

Enhanced performances in catalytic oxidation of

Nanli QIAO,Xin ZHANG,Chi HE,Yang LI,Zhongshen ZHANG,Jie CHENG,Zhengping HAO

《环境科学与工程前沿(英文)》 2016年 第10卷 第3期   页码 458-466 doi: 10.1007/s11783-015-0802-1

摘要: A series of hierarchical macro-/mesoporous silica supports (MMSs) were successfully synthesized using dual-templating technique employing polystyrene (PS) spheres and the Pluronic P123 surfactant. Pd was next loaded on the hierarchical silica supports via colloids precipitation method. Physicochemical properties of the synthesized samples were characterized by various techniques and all catalysts were tested for the total oxidation of -xylene. Among them, the Pd/MMS-b catalyst with tetraethoxysilane/polystyrene weight ratio of 1.0 exhibited superior catalytic activity, and under a higher gas hourly space velocity (GHSV) of 70000 h , the 90% conversion of -xylene has been obtained at around 200°C. The BET and SEM results indicated that Pd/MMS-b catalyst possesses high surface area and large pore volume, and well-ordered, interconnected macropores and 2D hexagonally mesopores hybrid network. This novel ordered hierarchical porous structure was highly beneficial to the dispersion of active sites Pd nanoparticles with less aggregation, and facilitates diffusion of reactants and products. Furthermore, the Pd/MMS-b catalyst possessed good stability and durability.

关键词: hierarchical macro-/mesoporous     silica     palladium     VOCs catalytic oxidation    

Air-side heat transfer and friction characteristics of biofouled evaporator under wet conditions

Hui PU, Guoliang DING, Xiaokui MA, Haitao HU, Yifeng GAO,

《能源前沿(英文)》 2010年 第4卷 第3期   页码 306-312 doi: 10.1007/s11708-009-0067-0

摘要: The effects of biofouling on air-side heat transfer and friction characteristics under wet conditions of three biofouled finned tube heat exchangers and one clean finned tube heat exchanger were investigated experimentally. Experimental results indicate that the biofouled fin efficiency of the evaporator decreases by 15.5% compared with the clean evaporator under the condition of the biofouled area ratio of 60% at the inlet air velocity of 2.0m/s; The ranges of friction fouling factor and heat transfer fouling factor are 19.8%―43.1% and ―15.6%―13.1%, respectively; a small quantity of biofouled particles can enhance heat transfer at low Reynolds number, and the enhancement effect decreases with the increase of Reynolds number.

关键词: finned tube     evaporator     fouling     heat transfer     friction    

Catalytic oxidation of carbon monoxide, toluene, and ethyl acetate over the

Zhidan Fu, Lisha Liu, Yong Song, Qing Ye, Shuiyuan Cheng, Tianfang Kang, Hongxing Dai

《化学科学与工程前沿(英文)》 2017年 第11卷 第2期   页码 185-196 doi: 10.1007/s11705-017-1631-5

摘要: The Pd catalyst supported on cryptomelane-type manganese oxide octahedral molecular sieve (OMS-2) were prepared. The effect of Pd loading on the catalytic oxidation of carbon monoxide, toluene, and ethyl acetate over Pd/OMS-2 has been investigated. The results show that the Pd loading plays an important role on the physicochemical properties of the Pd/OMS-2 catalysts which outperform the Pd-free counterpart with the 0.5Pd/OMS-2 catalyst being the best. The temperature for 50% conversion was 25, 240 and 160 °C, and the temperature for 90% conversion was 55, 285 and 200 °C for oxidation of CO, toluene, and ethyl acetate, respectively. The low-temperature reducibility and high oxygen mobility of Pd/OMS-2 are the factors contributable to the excellent catalytic performance of 0.5Pd/OMS-2.

关键词: cryptomelane-type manganese oxide octahedral molecular sieve     oxygen mobility     reducibility     carbon monoxide oxidation     volatile organic compound combustion    

Low-temperature CO oxidation over Au-doped 13X-type zeolite catalysts: preparation and catalytic activity

Qing YE, Donghui LI, Jun ZHAO, Jiansheng ZHAO, Tianfang KANG, Shuiyuan CHENG

《环境科学与工程前沿(英文)》 2011年 第5卷 第4期   页码 497-504 doi: 10.1007/s11783-011-0256-z

摘要: Au-supported 13X-type zeolite (Au/13X) was synthesized using a common deposition–precipitation (DP) method with a solution of sodium carbonate as a precipitate agent. Further testing was conducted to test for catalytic oxidation of CO. A study was conducted on the effects of different preparation conditions (i.e., chloroauric acid concentration, solution temperature, pH of solution, and calcinations temperature) on Au/13X for CO oxidation. In respect to the catalytic activity, the relationship between different the preparation conditions and gold particles in 13X zeolite was analyzed using X-ray diffraction, TEM and XPS. The activity of Au/13X catalysts in CO oxidation was dependent on the chloroauric acid concentration. From XRD results, a higher chloroauric acid concentration induced larger gold nanoparticles, which resulted in lower catalytic activity. Results revealed that higher temperatures induced higher Au loading, homogeneous deposit, and smaller gold clusters on the support of 13X, resulting in higher CO activity. Furthermore, a pH of 5 or 6 generated greater amounts of Au loading and smaller Au particles on 13X than at a pH of 8 or 9. This may be a result of an effective exchange between and Au(OH) Cl on specific surface sites of zeolite under the pH’s 5 and 6. The sample calcined at 300°C showed the highest activity, which may be due to the sample’s calcined at 200°C inability to decompose completely to metallic gold while the sample calcined at 400°C had larger particles of gold deposited on the support. It can be concluded from this study that Au/13X prepared from a gold solution with an initial chloroauric acid solution concentration of 1.5 × 10 mol·L gold solution pH of 6, solution temperature of around 90°C, and a calcination temperature of 300°C provides optimum catalytic activity for CO oxidation.

关键词: 13X-type zeolite     CO oxidation     gold solution     pH     calcination temperature    

处理我国高浓度工业废水的工艺技术研究

孙珮石,钱彪,洪品杰,原田吉明,杨英,郝玉昆

《中国工程科学》 2003年 第5卷 第6期   页码 68-73

摘要:

利用引进的CWO处理技术及其200 L/d小型工业试验装置,对我国焦化、造纸、生物制药等十多种行业的高浓度工业有机废水进行处理试验研究,结果表明CWO技术及装置对处理我国高浓度工业有机废水具有良好的适用性。在昆明自主设计、制造、集成建设和运行了一套20 m3/d工业应用装置,完成了对该技术的国产化研究与示范工程。该工业化应用装置对造纸黑液、焦化废水等两种高浓度生化难降解工业有机废水具有良好的净化处理性能,废水中的CODCr,NH3-N等的去除率均达99%以上,可以使废水经处理后连续稳定地达标排放,并具有较好的经济性。

关键词: 湿式催化氧化技术(CWO)     高浓度工业废水     工艺流程    

Ultrasound-assisted co-precipitation synthesis of mesoporous Co3O4–CeO2 composite oxides for highly selective catalyticoxidation of cyclohexane

《化学科学与工程前沿(英文)》 2022年 第16卷 第8期   页码 1211-1223 doi: 10.1007/s11705-022-2145-3

摘要: The one-step highly selective oxidation of cyclohexane into cyclohexanone and cyclohexanol as the essential intermediates of nylon-6 and nylon-66 is considerably challenging. Therefore, an efficient and low-cost catalyst must be urgently developed to improve the efficiency of this process. In this study, a Co3O4–CeO2 composite oxide catalyst was successfully prepared through ultrasound-assisted co-precipitation. This catalyst exhibited a higher selectivity to KA-oil, which was benefited from the synergistic effects between Co3+/Co2+ and Ce4+/Ce3+ redox pairs, than bulk CeO2 and/or Co3O4. Under the optimum reaction conditions, 89.6% selectivity to KA-oil with a cyclohexane conversion of 5.8% was achieved over Co3O4–CeO2. Its catalytic performance remained unchanged after five runs. Using the synergistic effects between the redox pairs of different transition metals, this study provides a feasible strategy to design high-performance catalysts for the selective oxidation of alkanes.

关键词: Co3O4–CeO2 composite oxides     cyclohexanone     cyclohexanol     ultrasonic-assisted co-precipitation     selective oxidation     solvent-free    

标题 作者 时间 类型 操作

Phenolic compounds removal by wet air oxidation based processes

Linbi Zhou, Hongbin Cao, Claude Descorme, Yongbing Xie

期刊论文

Catalytic wet air oxidation of phenol, nitrobenzene and aniline over the multi-walled carbon nanotubes

Shaoxia YANG,Yu SUN,Hongwei YANG,Jiafeng WAN

期刊论文

Wastewater treatment by catalytic wet air oxidation process over Al-Fe pillared clays synthesized using

Halima Sassi, Gwendoline Lafaye, Hédi Ben Amor, Abdelaziz Gannouni, Mohamed Razak Jeday, Jacques Barbier-Jr

期刊论文

Preparation of rare-earth metal complex oxide catalysts for catalytic wet air oxidation

LI Ning, LI Guangming, YAO Zhenya, ZHAO Jianfu

期刊论文

Characterization of value-added chemicals derived from the thermal hydrolysis and wet oxidation of sewage

Milan Malhotra, Anurag Garg

期刊论文

Removing ammonia from air with a constant pH, slightly acidic water spray wet scrubber using recycled

Ahmad Kalbasi Ashtari, Amir M. Samani Majd, Gerald L. Riskowski, Saqib Mukhtar, Lingying Zhao

期刊论文

Microwave-assisted catalytic oxidation of gaseous toluene with a Cu-Mn-Ce/cordierite honeycomb catalyst

Longli Bo, Shaoyuan Sun

期刊论文

Catalytic oxidation of

Na Li, Xin Xing, Yonggang Sun, Jie Cheng, Gang Wang, Zhongshen Zhang, Zhengping Hao

期刊论文

Effect of Cu-ZSM-5 catalysts with different CuO particle size on selective catalytic oxidation of N,N-Dimethylformamide

期刊论文

Enhanced performances in catalytic oxidation of

Nanli QIAO,Xin ZHANG,Chi HE,Yang LI,Zhongshen ZHANG,Jie CHENG,Zhengping HAO

期刊论文

Air-side heat transfer and friction characteristics of biofouled evaporator under wet conditions

Hui PU, Guoliang DING, Xiaokui MA, Haitao HU, Yifeng GAO,

期刊论文

Catalytic oxidation of carbon monoxide, toluene, and ethyl acetate over the

Zhidan Fu, Lisha Liu, Yong Song, Qing Ye, Shuiyuan Cheng, Tianfang Kang, Hongxing Dai

期刊论文

Low-temperature CO oxidation over Au-doped 13X-type zeolite catalysts: preparation and catalytic activity

Qing YE, Donghui LI, Jun ZHAO, Jiansheng ZHAO, Tianfang KANG, Shuiyuan CHENG

期刊论文

处理我国高浓度工业废水的工艺技术研究

孙珮石,钱彪,洪品杰,原田吉明,杨英,郝玉昆

期刊论文

Ultrasound-assisted co-precipitation synthesis of mesoporous Co3O4–CeO2 composite oxides for highly selective catalyticoxidation of cyclohexane

期刊论文